Towards processing and reasoning streams of events in knowledge-driven manufacturing execution systems

• Date: July, 2015
• Linked to: eScop

Title of the paper: Towards processing and reasoning streams of events in knowledge-driven manufacturing execution systems

Authors: Borja Ramis Ferrer, Sergii Iarovyi, Andrei Lobov, José L. Martinez Lastra

If you would like to receive a reprint of the original paper, please contact us
Towards processing and reasoning streams of events in knowledge-driven manufacturing execution systems

Authors: Borja Ramis Ferrer, Sergii Iarovyi, Andrei Lobov, José L. Martinez Lastra
{borja.ramisferrer, sergii.iraovyi, andrei.lobov, jose.lastra}@tut.fi

Tampere University of Technology
Factory Automation Systems and Technology Lab

Outline

• Background and motivation
• Technology timeline
• 2010…?
• Industrial automation knowledge-driven solutions
• SPARQL languages for reasoning streams of events
• An EP-SPARQL application in manufacturing systems
• Potentials
• Conclusions
• Further work
Background

• Large investment on information communication technologies implementation during last decades for optimizing processes in manufacturing systems due to market demands

• This caused the implementation of paradigms as service-oriented and event-driven architectures in factories, used for wide data integration

• On the other hand, the use of knowledge representation permitted the description of system status in knowledge bases, which can be queried and updated at runtime.
Towards processing and reasoning streams of events in knowledge-driven manufacturing execution systems
Technology timeline (2/2)

60s:
- Teletype
- ARPANET

70s:
- Graphics terminals
- Unix
- PC

80s:
- GUI
- Ethernet

90s:
- Smartphone
- the Internet

00s:
- Cloud computing (Platforms)
- Web standards

- Cloud computing
- Technology-agnostic
- PC
- server
- dumb terminal
- printer
- cluster controller

TAMPERE UNIVERSITY OF TECHNOLOGY
2010... ?

- **Standards and best practices** for knowledge-driven, data-intensive systems.

SPARQL

<table>
<thead>
<tr>
<th>Paradigm</th>
<th>Query language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developer</td>
<td>W3C</td>
</tr>
<tr>
<td>First appeared</td>
<td>2008; 7 years ago</td>
</tr>
<tr>
<td>Stable release</td>
<td>1.1 / March 21, 2013; 2 years ago</td>
</tr>
<tr>
<td>Website</td>
<td>www.w3.org/TR/sparql11-query</td>
</tr>
</tbody>
</table>

Major implementations

- Jena[^1]
- OpenLink Virtuoso[^1]

CEP monitor functional architecture

source:wikipedia.org

source:Jorge Garcia, “A complex event processing system for monitoring of manufacturing systems”

Towards processing and reasoning streams of events in knowledge-driven manufacturing execution systems
Motivation

• Several research works describe how to combine the concepts of CEP and querying KB systems for processing and reasoning streams of events in the Semantic Web

• SPARQL language extensions allow bridging the gap between the background knowledge enriched with analysis of event streams and reasoning tasks

• As recent manufacturing systems use these technologies, it is possible to integrate for processing and reasoning on streams of events during system run-time
Complex event processing (1/2)

- Event processing usually is defined on three levels: Event Stream Processing, Simple and Complex Event Processing (CEP)
- In CEP several streams of events are analyzed both as individual events and as event patterns, employing complex relationships between events
- Application of CEP in the domain of industrial automation is becoming particularly important in heterogeneous distributed automation systems
Complex event processing (2/2)

• Although CEP provide significant benefits for automation domain, most important obstacles are:
 – Dissimilarity of messages available currently in the system events
 – Reasoning over the simple messages limits the scope of data descriptions to value(s)/time comparisons, not allowing deeper correlation of data
Industrial automation knowledge-driven solutions

- The amount of data available for manufacturing systems is continuously growing and due to advance in ICT and CPS is expected to become even bigger.
- The Knowledge-Driven approach aims to include this aspect of industrial automation systems in the solution.

http://www.escop-project.eu

- In the Knowledge-Driven system the problem of persistence and manipulation of information about the system is being addressed by the use of Knowledge Representation.
SPARQL languages for reasoning streams of events

- Novel SPARQL extension languages can be used for continuous queries over streams of RDF data.
- Continuous SPARQL (C-SPARQL) and Event Processing SPARQL (EP-SPARQL) allow bridging the gap between knowledge of systems and streams of events processing.
- The main novelty of C-SPARQL and EP-SPARQL is the addition of RDF streams to the standard data types that are supported by SPARQL.
- This allows the evaluation of temporal RDF graphs during system execution.

D. F. Barbieri et. al., “An execution environment for C-SPARQL queries”, 2010
Towards processing and reasoning streams of events in knowledge-driven manufacturing execution systems

Monitoring the evolution of system model over time

• Processing and reasoning streams of events allow monitoring ontological models evolution over time
• Starting and finishing timestamps of a RDF triple are represented in temporal triples: \((s, p, o)[t_1, t_4] \)
An EP-SPARQL application in manufacturing systems (1/4)

• Actual industrial automation systems are forced to manage a large amount of events that occur at different points of the activities and organization hierarchies.

• For example, MES operations include complex tasks that require scheduling and monitoring the introduction of pallets in transport systems of assembly lines.
An EP-SPARQL application in manufacturing systems (2/4)

• Containers are placed in a central transport system that brings pallets to different manufacturing cells, which processes the parts transported by pallets.

• MES orders the introduction of a new pallet in the system when the transport system can handle more containers.

• Orders are sent after processing SELECT SPARQL queries that retrieve a list of pallets flowing in the production line. Then, processing the query results, the decision of pallet addition is made.
An EP-SPARQL application in manufacturing systems (3/4)

• Alternative: CEP + EP-SPARQL, assuming that:
 1. MES can handle busy events generated by cells that cannot accept a part transported by a container and
 2. Three busy events in less than 10 minutes must stop the introduction of new pallets

PREFIX mso: <http://www.tut.fi/FAST/mso#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
ASK {?Cell mso:Status mso:busy}
SEQ {?Cell mso:Status mso:busy}
SEQ {?Cell mso:Status mso:busy}
FILTER (getDURATION()"PT10M0S"^^xsd:duration)

• Dynamically states if new pallets can be inserted or not in the system
An EP-SPARQL application in manufacturing systems (4/4)

• Going through the boundaries of “different” systems. Checking if all the components where integrated to the product and the shipping is ready to start shipping of the product.

```
PREFIX mso: <http://www.tut.fi/FAST/mso#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

ASK {?
  ?product mso:hasComponent mso:comp_A
  ?product mso:hasComponent mso:comp_B
  ?product mso:hasComponent mso:comp_C
  ?shipping mso:hasStatus "ready"
}
```
Potentials

• Promising research area that can support a dynamic evolution of manufacturing system knowledge models
• Monitoring the evolution of system model over time can be taken into account for KPI calculation
• Continuous control for maintenance of industrial equipment
• Hence, EP-SPARQL or C-SPARQL can reduce the complexity, improve the efficiency and support the maintainability of systems
Conclusions and further work

• Recent SPARQL extension languages can be used for processing and reasoning streams of events in knowledge-driven manufacturing execution systems

• Addition of another degree of reasoning in actual knowledge-based systems, achieved by the consideration of time
Further work

• Implementation and test the concept in a larger scale industrial scenario
• Comparison between SPARQL language extensions/engines performance
• Developing ‘query templates’ for common manufacturing problems/cases – problem-oriented reasoning patterns
The research leading to these results has received funding from the ARTEMIS Joint Undertaking under grant agreement n° 332946 and from the Finnish Funding Agency for Technology and Innovation (TEKES), correspondent to the project shortly entitled eScop, Embedded systems for service-based control of open manufacturing and process automation (http://www.escop-project.eu/)
THANK YOU!
Any questions?

http://www.youtube.com/user/fastlaboratory

https://www.facebook.com/fast.laboratory

http://www.slideshare.net/fastlaboratory